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Abstract

Techniques for detecting pedestrian in still images have
attracted considerable research interests due to its wide ap-
plications such as video surveillance and intelligent trans-
portation systems. In this paper, we propose a novel sim-
pler pedestrian detector using state-of-the-art locally ex-
tracted features, namely, covariance features. Covariance
features were originally proposed in [1,2]. Unlike the work
in [2], where the feature selection and weak classifier train-
ing are performed on the Riemannian manifold, we select
features and train weak classifiers in the Euclidean space
for faster computation. To this end, AdaBoost with weighted
Fisher linear discriminant analysis based weak classifiers
are adopted. Multiple layer boosting with heterogeneous
features is constructed to exploit the efficiency of the Haar-
like feature and the discriminative power of the covariance
feature simultaneously. Extensive experiments show that by
combining the Haar-like and covariance features, we speed
up the original covariance feature detector [2] by up to an
order of magnitude in processing time without compromis-
ing the detection performance. For the first time, the pro-
posed work enables covariance feature based pedestrian
detection to work real-time.

1 Introduction

Although much effort has been spent recently, the prob-
lem of automatic detection of objects is far to be solved
(e.g., [2–10]). Pedestrian detection in still images is one
of the most difficult examples due to a wide range of poses
that human can adopt, large variations in clothing, as well
as cluttered backgrounds and environmental conditions. All
these issues have made this problem very challenging from
a computer vision point of view. Classification based meth-
ods have comprised the mainstream of research and have
been shown to achieve successful results in object detec-
tion. These approaches can be decomposed into two key
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components: feature extraction and classifier construction.
In feature extraction, dominant features are extracted from
a large number of training samples. These features are then
used to train a classifier. During detection, the trained clas-
sifier scans the entire input image to look for particular ob-
ject patterns. This general approach has shown to work very
well in detection of many different objects, e.g., face [11],
human [4, 5, 8, 10], car number plate [12], etc.

In this work, we propose a novel pedestrian detection
technique using the covariance features. The main contri-
bution of this work is two-fold. The first contribution is
that we show how multi-dimensional covariance features
can be integrated with weighted linear discriminant anal-
ysis before being trained on the AdaBoost framework. In
other words, the AdaBoost framework is adapted to vector-
valued covariance features and a weak classifier is designed
according to the weighted linear discriminant analysis. This
technique is not only faster but also accurate. In order to
support our claim, we compare the performance of our pro-
posed method with the state-of-the-art pedestrian detection
techniques mentioned in [13].

The proposed boosted covariance detector achieves
about four times faster detection speed than the method
in [2], but it is still not fast enough for real-time applica-
tions. On one hand, the Haar-like feature can be computed
rapidly due to its simplicity [11] but it is less powerful for
classification [14]. On the other hand, although the covari-
ance feature is a better candidate for representing pedes-
trians, it requires heavier computation than the Haar-like
feature. Here, to further accelerate our proposed detector,
we proffer a novel strategy—two-layer boosting with het-
erogeneous features—to exploit the efficiency of the Haar-
like feature and the discriminative power of the covariance
feature in a single framework. It is well known that the
cascade classification structure decreases the detection time
by rejecting at the beginning of the cascade most of the re-
gions in the image which do not contain a target. Thanks
to the flexibility of the cascaded classifier, we employ the
Haar-like feature based classifiers at the beginning of the
cascade; and use the covariance feature at latter stages. Ex-
periments show that by combining the Haar-like and co-
variance features, we speed up the conventional covariance
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feature detector [2] by an order of magnitude in detection
time without compromising the detection performance. On
a 360× 288 pixels image, our system can process at around
4 frames per second. To our knowledge, this is the first real-
time covariance feature based pedestrian detector. Prelim-
inary version of this work has been published in [15]. The
results and analysis presented in this paper is an extended
version of the results presented in [15].

The paper is organized as follows. Section 2 reviews var-
ious existing techniques for pedestrian detection. Section 3
gives a detailed description of our method. The experimen-
tal setup and experimental results are presented in Section
4. The paper concludes in Section 5.

2 Related work

The literature on pedestrian detection is abundant. Two
of the well known image features often being used are mo-
tion and shape. Motion approaches, which require prepro-
cessing techniques like background subtraction or image
segmentation (e.g. [16]), segment an image into so-called
super pixels and then detect the human body and estimate
its pose. Approaches based on shape information typically
detect pedestrian directly without using preprocessing tech-
niques [2, 4, 6, 7, 17]. Background subtraction and image
segmentation techniques can be applied to segment fore-
ground objects from the background. The foreground ob-
jects can then be classified into different categories, e.g.,
human, vehicle and animal, based on their shape, color, tex-
ture, etc. One of the main drawbacks of these techniques
is that they usually assume that the camera is static, back-
ground is fixed and the differences are caused only by fore-
ground objects. In addition, the performance of the system
is often affected by outdoor light changes.

The second approach is to detect human based on shape
features extracted from still images. Features can be dis-
tinguished into global features and local features depending
on how the features are measured. One of the well-known
global feature extraction methods is principal component
analysis (PCA). The drawback of global features is that the
approach fails to extract meaningful features if there is a
large variation in object’s appearance, pose and illumina-
tion conditions. On the other hand, local features are much
less sensitive to these problems since the features are ex-
tracted from the subset regions of the images. Some exam-
ples of the commonly used local features are wavelet coef-
ficient [11], gradient orientation [4], region covariance [2],
edgelet [5], etc.

3 Proposed method

Classification accuracy of boosting techniques depends
greatly on the choice of weak classifiers. Although effective
weak classifiers increase the performance of the final strong

classifiers, the large amount of potential features make the
computation prohibitively heavy with the use of complex
classifiers such as SVMs. For scalar features such as Haar-
like features in [8, 11], a very efficient stump can be used.
For vector-valued features such as HOG or covariance fea-
tures, unfortunately, seeking an optimal linear discriminant
would require much longer time. As shown in [18], it is pos-
sible to use linear SVMs as weak learners. Here we adopt a
more efficient approach. We project the multi-dimensional
features onto a 1D line using weighted Fisher linear dis-
criminant analysis (WLDA). WLDA finds a linear projec-
tion function which guarantees optimal classification of nor-
mally distributed samples of two classes.

Note that this treatment is different from [1, 2], where
the covariance matrix is directly used as the feature and the
distance between features is calculated in the Riemannian
manifold1. However, eigen-decomposition is involved for
calculating the distance in the Riemannian manifold. Eigen-
decomposition is very computationally expensive (O(d3)
arithmetic operations). We instead vectorize the correlation
coefficient and measure the distance in the Euclidean space,
which is faster.

We conducted an experiment similar to the one described
in [1] between the linear version (Euclidean space) and
manifold version (Riemannian space) of covariance fea-
tures. The experiment compares the two different dis-
tance measures:- distance based on the correlation coeffi-
cient from two covariance matrices in the Euclidean space
and distance of two covariance matrices in the Riemannian
manifold. Figure 1 shows some of the experimental results.
From the figure, we can roughly conclude that their perfor-
mance on pedestrian detection is quite similar.

This section begins with a short explanation of Fisher
linear discriminant analysis (LDA) concept. We then ex-
tend these methods to varying weighted training samples.
Next, we describe in details how to apply these techniques
to train multi-dimensional covariance features on a cascade
of AdaBoost classifiers framework. Finally, we introduce
a new two-layer pedestrian detector which utilizes the effi-
ciency of Haar-like features and the discriminative power of
the covariance features.

3.1 Weighted Fisher discriminant analysis

The linear discriminant analysis is a representative of the
supervised learning method which yields the linear projec-
tion. The goal of the Fisher’s criteria is to find a linear
combination of the variables that leads to the best sepa-
ration between the two projected sets. The criterion pro-
posed by Fisher assumes uniformly weighted training sam-
ples. In AdaBoost training, each data point is associated

1Covariance matrices are symmetric and positive semi-definite, hence
they reside in the Riemannian manifold.
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Figure 1: Detection examples on AVSS 2007 and CAVIAR dataset. Top: Input region. Middle: Best matching region found using
covariance features based on distance in the Riemannian manifold [1]. Bottom: Best matching region found using covariance features
based on distance in the Euclidean space.

with a weight which measures how difficult to correctly
classify this data. Therefore, we need to apply a weighted
version of the standard Fisher linear discriminant analysis
(WLDA) [19]. Similar to LDA [20], WLDA finds a lin-
ear combination of the variables that can separate the two
classes as much as possible with emphasis on the training
samples with high weights.

3.2 A cascade of covariance descriptors

The covariance descriptors encode the relationship in-
formation between different image statistics inside the re-
gion. Combining with WLDA, the descriptors can be used
to represent various parts of the human body. The exper-
imental results show that the covariance regions selected
by AdaBoost are very meaningful and can be easily inter-
preted as shown in Figure 2. The first selected feature fo-
cuses on the bottom part of the human body while the sec-
ond selected feature focuses on the top part of the body. It
turns out that covariance features are well adapted to cap-
ture patterns that are invariant to illumination changes and
human poses/appearance changes. Our fast boosted covari-
ance features based detection framework is summarized in
Algorithm 1.

In order to reduce the computation time, a cascade of
classifiers is built [11]. The key insight is that efficient
boosted classifiers, which can reject many of the simple
non-pedestrian samples while detecting almost all pedes-
trian samples, are constructed and placed at the early stages
of the cascades. Time consuming and complex boosted

classifiers, which can remove more complex non-pedestrian
samples, are placed in the later stages of the cascades.
By constructing classifiers in this way, we are able to
quickly discard simple background regions of the image
e.g., sky, building, road, etc. while spending more time on
pedestrian-like regions. Only samples that can pass through
all stages of the cascades are classified as pedestrians.

Figure 2: The first and second covariance region selected by Ad-
aBoost. The first two covariance regions overlayed on human
training samples are shown in the first column. The second column
displays human body parts selected by AdaBoost. The first co-
variance feature represents human legs (two parallel vertical bars)
while the second covariance feature captures the information of
the head and the human body.

in
ria

-0
03

25
64

0,
 v

er
si

on
 1

 - 
29

 S
ep

 2
00

8



Input:
• A positive training set and a negative training set;

• Dmin: minimum acceptable detection rate per cascade level;

• Fmax: maximum acceptable false positive rate per cascade level;

• Ftarget: target overall false positive rate.

Initialize: i = 0; Di = 1; Fi = 1;
while Ftarget < Fi do

i = i + 1; fi = 1;
while fi > Fmax do

(1) Normalize AdaBoost weights;
(2) Calculate the projection vector w with WLDA; and project
the covariance features to 1D;
(3) Train decision stumps by finding a optimal threshold θ, using
the training set;
(4) Add the best decision stump classifier into the strong classi-
fier;
(5) Update sample weights in the AdaBoost manner;
(6) Lower threshold such that Dmin holds;
(7) Update fi using this threshold.

end
Di+1 = Di × Dmin; Fi+1 = Fi × fi; and remove correctly
classified negative samples from the training set;
if Ftarget < Fi then

Evaluate the current cascaded classifier on the negative images
and add misclassified samples into the negative training set.

end
end
Output:

• A cascade of boosted covariance classifiers for each cascade level
i = 1, · · · ;

• Final training accuracy: Fi and Di.

Algorithm 1: The training algorithm for building the cascade of
boosted covariance detector.

3.3 Two-layer boosting with heterogeneous fea-
tures

A two-layer cascade of classifiers is adopted here in or-
der to speed up the proposed detector. The goals of de-
signing the two-layer approach are mainly the speed and
accuracy. The idea is to place simple and fast to com-
pute features in the first layer while putting a more accu-
rate but slower to compute features in the second layer of
the cascade. The simple features filter out most simple non-
pedestrian patterns in the early stage of the cascade.

Haar-like wavelet features have proved to be extremely
fast and highly powerful in the application of face detec-
tions [11]. However, the Haar-like feature performs poorly
in the context of human detection as reported in [8]. In or-
der to improve the overall accuracy, we apply boosted co-
variance features in the second layer. This way we utilize
the efficiency of the Haar-like feature and the discriminative
power of the covariance feature in a single framework.

Due to the flexibility of the cascaded structure, it is easy
to integrate multiple heterogeneous features. Although we
use Haar-like and covariance features here, some combina-
tion of various features may lead to better performance. It

remains a future study topic on how to find the best combi-
nation.

4 Experiments

The experimental section is organized as follows. First,
the datasets used in this experiment are described. Parame-
ters used to achieve optimal results are then discussed. Fi-
nally, experimental results of different techniques are com-
pared and analyzed.

4.1 Experiments on DaimlerChrysler dataset [13]
with boosted covariance features

The dataset [13] consists of three training sets and two
test sets. Each training set contains 4, 800 pedestrian ex-
amples and 5, 000 non-pedestrian examples. All samples
are scaled to size 18 × 36 pixels. For boosted cascade of
covariance features, we generate a set of overcomplete rect-
angular covariance filters and subsample the overcomplete
set in order to keep a manageable set for the training phase.
The set contains approximately 1, 120 covariance filters.

We also train covariance features with various combina-
tion of SVM using SVMLight [21]. For this method, we
concatenate the covariance descriptors for all regions into
a combined feature vector. SVM classifier is trained using
this feature vector. Our preliminary experiments show re-
gion of size 7 × 7 pixels, shifted at a step size of 2 pixels
over the entire input image of size 18 × 36 to be optimal
for our benchmark datasets (total feature length of 2, 520).
For the HOG features, we have decided to use a cell size of
3×3 pixels with a block size of 2×2 cells, descriptor stride
of 2 pixels and 18 orientation bins of signed gradients (total
feature length is 8, 064) to train SVM classifiers.

A comparison of the best performing results for different
feature types are shown in Figure 4(a). The performance of
our proposed method is very similar to the best performance
of HOG features and covariance features. From the fig-
ure, we can see that gradient information is very helpful in
human classification problems. In all experiments, nonlin-
ear SVMs improve performance significantly over the linear
one. However, this comes at the cost of a much higher com-
putation time.

It might not be fair to perform a direct comparison
between the three detectors since the boosted cascade is
trained with more non-pedestrian samples, i.e., by mak-
ing use of cascade structure, we have manually increased
the non-pedestrian training sample size from a set of non-
pedestrian images. In order to compare the performance of
three detectors, we apply bootstrapping technique to HOG
[4] and covariance features. Bootstrapping is applied iter-
atively, generating 10, 000 new non-pedestrian samples at
each iteration. The result is shown in figure 4(b). We ob-
served that collecting the first 10, 000 new non-pedestrian
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samples did not take long but the second iteration took a
long time. This is exactly what we expected since the new
classifier had better accuracy than the previous classifier.
From this figure, the improvement of training HOG fea-
ture using bootstrapping technique over initial classifier is
up to 7% increase in detection rate at 2.5% false positives
rate while the improvement is slightly lower in covariance
features (about 3% increases at 2.5% false positives rate).
However, this performance gain comes at a higher compu-
tation cost during training phase as training samples are now
much more complex.

Figure 3: Examples of mistakes made by our boosted covariance
detector on the dataset [13]. The first row shows false negative
examples and the last row shows false positive examples.

Figure 3 presents a qualitative assessment of the errors
made by our detectors, showing some false negative (non-
pedestrian-like pedestrians) and false positive (pedestrian-
like non-pedestrian) examples from our detectors point of
view. The results reveal that most false negatives are due
to the subject’s pose deformation, occlusions, or the very
difficult illumination environments. False positives usually
contain gradient information which looks like human body
boundaries. It is interesting to see that many false positives
are road signs which have shoulder-arm and head shaped
contours.

windows per sec seconds per frame
HOG, Quadratic SVM 25 714
HOG, Linear SVM 4800 3.6
Our COV approach 6000 2.9

Table 1: Average time required to evaluate 10 frames of a sequence
of 384× 288 pixels images. Each image consists of 17, 280 win-
dows (scale factor of 0.8 and step-size of 4 pixels).

Next, we compare the processing speed in windows per
second of the two best classifiers: HOG with quadratic
SVM and 20 stages of boosted covariance features. We
apply the two classifiers to a sequence of 10 images with
resolution of 384 × 288 pixels in width and height. Table
1 shows the average detection speed for the two classifiers.
As expected, the detection speed of 20 stages of boosted co-
variance features is much faster than the detection speed of
the non-linear SVM classifier.

In the next experiment, we show how adding a cascade

of Haar-like wavelet features as a preprocessing to a cas-
cade of boosted covariance features could help improve the
detection speed while maintaining a high detection rate.

4.2 Experiments on DaimlerChrysler dataset [13]
with two-layer boosting

We generate a set of overcomplete Haar-like wavelet
filters and subsample the overcomplete set. The set of
Haar-like features that we use to train the cascade con-
tained 20, 547 filters: 5, 540 vertical two-rectangle features,
5, 395 horizontal two-rectangle features, 3, 592 vertical
three-rectangle features, 3, 396 horizontal three-rectangle
features and 2, 624 four-rectangle features. From the pre-
liminary experiments on signed and unsigned wavelets, the
authors observed the performance of signed wavelets to out-
perform the performance of unsigned wavelets. Hence, we
preserve the sign of intensity gradients in this experiment.
For covariance features, we use a set of rectangular covari-
ance features generated from previous section.

Table 2 shows the evaluation time in windows per second
for different hybrid configurations. Adding more stages of
Haar-like wavelet features as a preprocessing step increases
the detection speed approximately exponentially. In terms
of performance, the new technique performs very similar to
the boosted covariance features experimented earlier at low
false positive rate (figure 4(c)). At high false positive rate,
the system might seem to perform poorly due to the use of
Haar-like features. Nevertheless, most real-world applica-
tions often focus on low false detections.

windows per sec
Our COV (20 stages) 6, 000
Haar (3 stages) and COV (17 stages) 30, 000
Haar (5 stages) and COV (15 stages) 50, 000
Haar (10 stages) and COV (10 stages) 100, 000
Haar (20 stages) 200, 000

Table 2: Average evaluation time in windows per second for dif-
ferent parameters of the two-layer boosting approaches.

4.3 Experiments on INRIA dataset [4] with
boosted covariance features

INRIA dataset [4] consists of one training set and one
test set. The training set consists of 2, 416 mirrored human
samples and 1, 200 non-human images. The human sam-
ples are mostly in standing position. A border of 16 pixels
is added to the sample in order to preserve contour informa-
tion. All samples are scaled to size 64 × 128 pixels. The
test set contains 1, 176 human samples (mirrored) extracted
from 288 images.

Similar to the previous experiments, we generate a set
of overcomplete rectangular covariance filters and subsam-
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Figure 4: See text for details. Performance comparison of our boosted covariance features with (a) other feature types on DaimlerChrysler
dataset [13]. (b) HOG and covariance features trained using SVM with bootstrapping technique. (c) our hybrid approach on Daimler-
Chrysler dataset [13]. (d) HOG with linear SVM [4] and covariance features on Riemannian manifold [2]. The curve of covariance on
Riemannian manifold is reproduced from [2]. (e) our hybrid approach on INRIA dataset [4]. (f) HOG features on INRIA dataset with
resolution of 18× 36 pixels.

ple the overcomplete set in order to keep a manageable
set for the training phase. The set contains approximately
15, 225 covariance filters. In each stage, weak classifiers are
added until the predefined objective is met (detection rate of
99.5% and false positive rate of 50%). Each stage is trained
with 2, 416 human samples and 5, 000 non-human samples.
The final cascade consists of 29 stages. We evaluate the
performance of our classifiers on the given test set using
classification approach and detection approach. For human
classification, we used cropped human samples taken from
the test images. During classification, the number of the
positively classified windows is used to determine if the test
sample is human or non-human. For human detection, a
fixed size window is used to scan the test images with a
scale factor of 0.95 and a step size of 4 pixels. As in [2],
mean shift clustering [22] is used to cluster multiple over-
lapping detection windows. Simple rules as in [11] are also
applied on the clustering results to merge those close detec-
tion windows. The experiments are conducted using a cur-
rent standard desktop with 2.80 GHz Intel Pentium-D CPU
and 2 GB memory.

Figure 4(d) shows a comparison of our experimental re-
sults with different methods. The curve of our method is

generated by adding one cascade level at a time. From
the figure, it can be seen that our system’s performance is
much better than HOG with linear SVM [4] while achiev-
ing a comparable detection rate to the technique described
in [2]. [2] calculates distance between covariance matrix on
the Riemannian manifold. An eigen-decomposition is re-
quired which slows down the computation speed [2]. In
contrast, our approach avoids the eigen-decomposition and
therefore it is much faster. It is also easier to implement.
The figure also shows the performance of our system on
human detection problem. In order to achieve the results
at low false positive rate i.e. < 10−5, we manually adjust
the minimum neighbour threshold (a number of merged de-
tections). As for the processing time, on average our unop-
timized implementation in C++ can search around 12, 000
detection windows per second. Due to the cascade structure,
the search time is faster when human is against plain back-
grounds and slower when human is against more complex
backgrounds. Table 3 shows the average detection speed
for three different classifiers. Compared to [4] and [2], our
search time is faster than both techniques (2.2 times faster
than [4] and 4 times faster than [2]).
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windows per sec
COV, Riemannian Manifold [2] 3, 000
HOG, Linear SVM [4] 5, 500
Our COV approach (proposed) 12, 000

Table 3: Average computation time in windows per second for
different detectors.

4.4 Experiments on INRIA dataset [4] with the
two-layer boosting

Similar to the experiments on the DaimlerChrysler
dataset [13], we subsample the overcomplete set of Haar
wavelet features to 54, 779 filters: 11, 446 vertical two-
rectangle features, 14, 094 horizontal two-rectangle fea-
tures, 8, 088 vertical three-rectangle features, 10, 400 hor-
izontal three-rectangle features and 10, 751 four-rectangle
features. Unlike the previous experiment, the performance
of unsigned wavelets slightly outperforms the performance
of signed wavelets. The authors think that when the human
resolution is large, clothing and background details can be
easily observed and intensity gradient sign becomes irrele-
vant. In other words, the wide range of clothing and back-
ground colors make the gradient sign uninformative, e.g.,
a person with a black shirt in front of a white background
should have the same information as a person with a white
shirt in front of a black background. Hence, we used the
absolute values of the wavelet responses in this experiment.

Table 4 shows the average evaluation time in windows
per second for different hybrid configurations. Similar to
previous results, adding Haar-like wavelet features as a pre-
processing step increases the detection speed significantly.
Compared with the original covariance detector in [2], the
two-layer boosting approach is 10− 15 times faster. Figure
4(e) shows the performance of two-layer boosting approach.
The overall performance of different hybrid configurations
is very similar to the performance of a cascade of boosted
covariance features. Figure 5 demonstrates some detection
examples using our hybrid detector on INRIA test dataset
and Advanced Video and Signal based Surveillance (AVSS)
2007 dataset 2. The AVSS detection results are provided as
supplementary materials.

In the next experiment, we downsample the INRIA
dataset to size 18 × 36 pixels and compare the two-layer
boosting approach and HOG features. The experiment
setup used in this experiment is similar to the one used in
previous experiment. We test the classifier on the INRIA
test set and the experimental results are shown in figure 4(f).
These results seem to be consistent with results reported in
the previous experiment (section 4.1). HOG features with
non-linear SVM performs slightly better than our boosted
covariance features. However, this contradicts the results

2http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007 d.html

reported earlier (figure 4(d)) where boosted covariance fea-
tures outperform HOG features. We suspect the difference
is due to the resolution of the datasets and the classifiers
used. Small resolution datasets give less number of mean-
ingful covariance features than large resolution datasets. As
a result, covariance descriptors are not powerful enough to
capture large pedestrian variations.

windows per sec
Our COV (29 stages) 12, 000
Haar (5 stages) and COV (24 stages) 29, 000
Haar (7 stages) and COV (22 stages) 35, 000
Haar (9 stages) and COV (20 stages) 40, 000
Haar (15 stages) and COV (12 stages) 52, 000
Haar (27 stages) 200, 000

Table 4: Average evaluation time in windows per second for dif-
ferent parameters of the two-layer boosting approaches.

Figure 5: Detection examples. The boxes show the detection re-
sults of our hybrid classifier (9 levels of Haar-like features and 22
levels of covariance features). Top: INRIA dataset. Bottom: AVSS
2007 dataset. Note that no post-processing has been applied to the
detection results.

4.5 Limitations

In this section, we test our trained classifier (classifier
trained on INRIA dataset) on random internet images with
pedestrians having variable illumination, appearance, pose
and occlusion. Some of the results are shown in figure 6.
The top row shows the raw detection results. The bottom
row shows the merged detection results using mean shift
clustering. Based on our observations, the system works
well on the images where there is a small gap between
pedestrians i.e., no occlusion between pedestrians. When
humans stand in a group or occlude one another, the hu-
man contour is quite complex and different from what the
classifier was trained with. In addition, these exist a lot of
multiple overlapping detection windows when human oc-
cludes one another. Mean shift clustering fails to merge the
detection windows correctly when there is a lot of overlap-
ping windows. As a result, the system fails to detect most
of the pedestrians. We also note that a lot of false detections
came from the human body parts e.g., human limbs. This
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Figure 6: Detection examples on random internet images. Top: raw detection results. Bottom: merged detection results using mean shift
clustering technique.

is not surprising since our negative training samples do not
contain any of the human body parts.

5 Conclusion

This paper presents a new technique for pedestrian de-
tection that combines covariance features with multi-layer
boosting. The first contribution of our work lies in the
integration of multi-dimensional covariance features with
weighted linear discriminant analysis as the weak classifier
for AdaBoost training. Weak classifiers are trained in the
Euclidean space for faster computation. As our second con-
tribution, we presented an architecture that uses two-layer
boosting with heterogeneous features, namely a first layer
with Haar-like features, and a second layer with covariance
features, to exploit the efficiency of the Haar-like feature
and the discriminative power of the covariance feature. This
way our detector can perform up to 15 times faster than the
original covariance detector. As a result, our system can
process at around 4 frames per second on a 360× 288 pix-
els image.
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